The first study phase of ESA's HydRON project has been successfully completed

21 July 2021

The first study phase of HydRON, the ESA project led by Thales Alenia Space, for a high-performance optical network, in which Telespazio is also participating, has been successfully completed.

HydRON (High throughput optical satellite) is a high-throughput optical space network and forms part of ESA's ScyLight programme for secure and laser communication technology.

Laser communications are revolutionising satellite communications and ESA’s HydRON optical network will seamlessly link satellites to fiber networks on the ground, enabling reliable, instant connectivity for European citizens across the world. HydRON is a high-throughput optical space network and forms part of ESA's ScyLight programme for secure and laser communication technology.

This first phase, HyPha Study, defined early system requirements and explored network architectures, as well as the technologies necessary for future implementation.

Subsequently, activities will be carried out to build first IOD (In-Orbit Demonstrator) flight demonstrators to test and mature space optical network solutions for satellite and terrestrial operators usage, that will be operating in the future market.

Telespazio, as Satellite Operator, will play a fundamental role in defining the system architecture, thanks to its skills and professionalism gained in decades of satellite activity.

Also, Open Fiber as the “wholesale-only” infrastructure operator, providing access and transport networks, entirely in optical fiber to more than 200 operators in Italy and Sant'Anna School of Advanced Studies, an academic institution with expertise in free space communication systems FSO (Free Space Optics), are part of the project.

This initiative contributes to Europe's technological independence in connectivity services through space (Fiber in the sky / Internet beyond the Cloud(s)) and to the expansion of its capacities towards new types of services and applications (Cloud in the sky, IP Routing On-Board Satellite, extra-territorial service capacities, etc.).

 

About optical satellite connectivity

 

In FSO, lasers are used to establish a transmission link with optical receptors (photodiodes) for reception. One advantage of using lasers, or better direct and collimated links, is that these links are very difficult to intercept, assuring a naturally very secure communication process.

But above all, by exploiting the technique of wavelength multiplexing commonly used in terrestrial fiber connections, it is possible to create FSO links with capacities of hundreds of Gbit/s.

This is much higher than bandwidths of current radio-frequency technologies, thus allowing to meet increasing network bandwidth requests.

Moreover, satellite connectivity is always available in its coverage area and does not require complex infrastructure to be deployed (poles, lines, exchanges, etc.).

Recent studies show that the ultra-broadband digital connectivity demand increased significantly during the past years, and the COVID-19 pandemic has shown that it is now essential for families and businesses to have fast data connections.

By integrating seamlessly with the terrestrial optical fiber networks, satellite systems employing FSO technologies will empower telecommunications infrastructures to be able to meet growing demand, support 5G and to enable new, innovative applications using Artificial Intelligence and Internet-of-Things.

Other News & Stories

20.09.2021
Telespazio’s “through-the-rotor” broadband solution on board the Leonardo SW-4 SOLO drone

For the first time ever, a Leonardo rotary-wing aerial platform will be equipped with a satellite system built by Telespazio.

02.08.2021
EMS, the eagle-eye of Copernicus for managing emergencies

Acquiring images and providing satellite maps essential for managing emergency operations: the Copernicus Emergency Management Service (EMS) – Rapid Mapping is led by e-GEOS and involves the participation of GAF and Telespazio Ibérica, as well as ITHACA, SERTIT, SIRS, GMV and CLS.

02.08.2021
Telespazio UK wins contract to run ESA services in Spain

Telespazio UK has been awarded a €14M Framework Service contract by the European Space Agency to run as, leader of a consortium of European companies, the science operations centres of the astronomy, heliophysics and fundamental physics missions of ESA at the European Space Astronomy Centre (ESAC) in Madrid, Spain.

30.07.2021
New “Multisatellite Antenna” inaugurated in Brazil to help protect the Amazon

The new “Multisatellite Antenna” purchased and installed by Telespazio for Censipam, the government agency in charge of protecting the Amazonian rainforest, was inaugurated recently in Formosa, in the Brasilian state of Goiás.

20.09.2021
Telespazio’s “through-the-rotor” broadband solution on board the Leonardo SW-4 SOLO drone

For the first time ever, a Leonardo rotary-wing aerial platform will be equipped with a satellite system built by Telespazio.

02.08.2021
EMS, the eagle-eye of Copernicus for managing emergencies

Acquiring images and providing satellite maps essential for managing emergency operations: the Copernicus Emergency Management Service (EMS) – Rapid Mapping is led by e-GEOS and involves the participation of GAF and Telespazio Ibérica, as well as ITHACA, SERTIT, SIRS, GMV and CLS.

02.08.2021
Telespazio UK wins contract to run ESA services in Spain

Telespazio UK has been awarded a €14M Framework Service contract by the European Space Agency to run as, leader of a consortium of European companies, the science operations centres of the astronomy, heliophysics and fundamental physics missions of ESA at the European Space Astronomy Centre (ESAC) in Madrid, Spain.

30.07.2021
New “Multisatellite Antenna” inaugurated in Brazil to help protect the Amazon

The new “Multisatellite Antenna” purchased and installed by Telespazio for Censipam, the government agency in charge of protecting the Amazonian rainforest, was inaugurated recently in Formosa, in the Brasilian state of Goiás.